Page 39 - Mathematics GRADE 9, DE-STREAMED (MTH1W)
P. 39

Universal Design for Learning (UDL) and Differentiated Instruction (DI)
Students in every mathematics classroom vary in their identities, lived experiences, personal interests, learning profiles, and readiness to learn new concepts and skills. Universal Design for Learning (UDL) and differentiated instruction (DI) are robust and powerful approaches to designing assessment and instruction to engage all students in mathematical tasks that develop conceptual understanding and procedural fluency. Providing each student with opportunities to be challenged and to succeed requires teachers to attend to student differences and provide flexible and responsive approaches to instruction. UDL and DI can be used in combination to help teachers respond effectively to the strengths and needs of all students.
The aim of the UDL framework is to assist teachers in designing mathematics programs and environments that provide all students with equitable access to the mathematics curriculum. Within this framework, teachers engage students in multiple ways in order to support them in becoming purposeful and motivated in their mathematics learning. Teachers take into account students’ diverse learner profiles by designing tasks that offer individual choice, ensuring relevance and authenticity, providing graduated levels of challenge, and fostering collaboration in the mathematics classroom. Teachers also represent concepts and information in multiple ways to help students become resourceful and knowledgeable learners. For example, teachers use a variety of media to ensure that students are provided with alternatives for auditory and visual information; they clarify mathematics vocabulary and symbols; and they highlight patterns and big ideas to guide information processing. To support learners as they focus strategically on their learning goals, teachers create an environment in which learners can express themselves using a range of kinesthetic, visual, and auditory strengths. For example, teachers can improve access to tools or assistive devices; vary ways in which students can respond and demonstrate their understanding of concepts; and support students in goal-setting, planning, and time- management skills related to their mathematics learning.
Designing mathematics tasks through UDL allows the learning to be “low floor, high ceiling” – that is, all students are provided with the opportunity to find their own entry point to the learning. Teachers can then support students in working at their own pace and provide further support as needed, while continuing to move student learning forward. Tasks that are intentionally designed to be low floor, high ceiling provide opportunities for students to use varied approaches and to continue to be engaged in learning with varied levels of complexity and challenge. This is an inclusive approach that is grounded in a growth mindset: the belief that everyone can do well in mathematics.
While UDL provides teachers with broad principles for planning mathematics instruction and learning experiences for a diverse group of students, DI allows them to address specific skills and learning needs. DI is rooted in assessment and involves purposefully planning varied approaches to teaching the content of the curriculum; to the processes (e.g., tasks and activities) that support students as they make sense of what they are learning; to the ways in which students demonstrate their learning and the outcomes they are expected to produce; and to the learning environment. DI is student centred and involves a strategic blend of whole-class, small-group, and individual learning activities to suit students’ differing strengths, interests, and levels of readiness to learn. Attending to students’ varied readiness for learning
38





























































































   37   38   39   40   41